ASSIGNMENT #6

You may use a calculator on the entire assignment.

1. The rate at which raw sewage enters a treatment tank is given by $E(t) = 850 + 715\cos\left(\frac{\pi t^2}{9}\right)$ gallons per hour

for $0 \le t \le 4$ hours. Treated sewage is removed from the tank at the constant rate of 645 gallons per hour. The treatment tank is empty at time t = 0.

- (a) How many gallons of sewage enter the treatment tank during the time interval $0 \le t \le 4$? Round your answer to the nearest gallon.
- (b) For $0 \le t \le 4$, at what time t is the amount of sewage in the treatment tank greatest? To the nearest gallon, what is the maximum amount of sewage in the tank? Justify your answers.
- (c) For $0 \le t \le 4$, the cost of treating the raw sewage that enters the tank at time t is (0.15 0.02t) dollars per gallon. To the nearest dollar, what is the total cost of treating all the sewage that enters the tank during the time interval $0 \le t \le 4$?

1996 AB 3

- 2. The rate of consumption of cola in the United States is given by $S(t) = Ce^{kt}$, where S is measured in billions of gallons per year at t is measured in years from the beginning of 1980.
 - (a) The consumption rate doubles every 5 years and the consumption rate at the beginning of 1980 was 6 billion gallons per year. Find *C* and *k*.
 - (b) Find the average rate of consumption of cola over the 10-year time period beginning January 1, 1983. Indicate the units of measure.
 - (c) Use the trapezoidal rule with four equal subdivisions to estimate $\int_{\xi}^{7} S(t) dt$.
 - (d) Using correct unites, explain the meaning of $\int_{5}^{7} S(t) dt$ in terms of cola consumption.

1989 AB 6

- 3. Oil is being pumped continuously from a certain oil well at a rate of proportional to the amount of oil left in the well, that is, $\frac{dV}{dt} = ky$, where y is the amount of oil left in the well at any time t. Initially there were 1,000,000 gallons of oil in the well, and 6 years later there were 500,000 gallons remaining. It will no longer be profitable to pump oil when there are fewer than 50,000 gallons remaining.
 - (a) Write an equation for *y*, the amount of oil remaining in the well at any time *t*.
 - (b) At what rate is the amount of oil in the well decreasing when there are 600,000 gallons of oil remaining.
 - (c) In order not to lose money, at what time *t* should oil no longer be pumped from the well?

ASSIGNMENT #6

1999 AB 3

	4.	4. The rate at which water flows out a pipe, in gallons per hour, is given by a differentiable time <i>t</i> . The table below shows the rate as measured ever 3 hours for a 24-hour period.		
ĺ	t	R(t)	(a) Use a midpoint Riemann sum with 4 subdivision of equal lenge e^{24}	gth to

t	R(t)
(hours)	(gallons per hour)
0	9.6
3	10.4
6	10.8
9	11.2
12	11.4
15	11.3
18	10.7
21	10.2
24	9.6

ision of equal length to approximate $\int_{0}^{2\pi} R(t) dt$. Using correct units, explain the meaning of your answer in terms of water flow.

(b) Is there some time t, 0 < t < 24, such that R'(t) = 0? Justify your answer.

(c) The rate of water flow, R(t) can be approximated by $Q(t) = \frac{1}{79} (768 + 23t - t^2)$. Use Q(t) to approximate the average rate of water flow during the 24-hour time period. Indicate the units of measure.

1997 AB 6

Let v(t) be the velocity, in feet per second, of a skydiver at time t seconds, $t \ge 0$. After her 5. parachute opens, her velocity satisfies the differential equation $\frac{dy}{dt} = -2v - 32$, with initial condition v(0) = -50.

- (a) Use separation of variables to find an expression for v in terms of t, where t is measured in seconds.
- Terminal velocity is defined as $\lim v(t)$. Find the terminal velocity of the skydiver to (b) the nearest foot per second.
- It is safe to land when her speed is 20 feet per second. At what time t does she reach (c) this speed?

AB 1/BC 1 Calculator Allowed

- 6. Let *R* be the shaded region in the first quadrant enclosed by the graphs of $y = e^{-x^2}$, $y = 1 \cos x$, and the yaxis, as shown in the figure above.
- (a) Find the area of the region *R*.
- Find the volume of the solid generated when the (b) region R is revolved about the x-axis.
- (c) The region *R* is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

AB 2/BC 2 Calculator allowed

7. Two runners *A* and *B*, run on a straight racetrack for $0 \le t \le 10$ seconds. The graph at the right which consists of two line segments, shows the velocity, in meters per second, of Runner *A*. the velocity, in meters per second, of Runner *B* is

given by the function v defined by $v(t) = \frac{24t}{2t+3}$

- (a) Find the velocity of Runner *A* and the velocity of Runner *B* at time t = 2 seconds. Indicate the units of measure.
- (b) Find the acceleration of Runner *A* and the acceleration of Runner *B* at time t = 2 seconds. Indicate the units of measure.
- (c) Find the total distance run by Runner *A* and the total distance run by Runner *B* over the time interval $0 \le t \le 10$ seconds. Indicate the units of measure.

AB 3

8. The figure at the right shows the graph of f', the derivative of the function f, for $-7 \le x \le 7$. The graph of f' has horizontal tangent lines at x = -3, x = 2, and x = 5, and a vertical tangent line at x = 3.

- (a) Find all the values of x, -7 < x < 7, at which f attains a relative minimum. Justify your answer.
- (b) Find all the values of x, -7 < x < 7, at which f attains a relative maximum. Justify your answer.
- (c) Find all the values of x, -7 < x < 7, at which f''(x) < 0.
- (d) At what values of x, $-7 \le x \le 7$, does f attain an absolute maximum? Justify your answer.

AB-4 Calculator allowed

- 9. Water is pumped into an underground tank at a constant rate of 8 gallons per minute. Water leaks out of the tank at the rate of $\sqrt{t+1}$ gallons per minute, for $0 \le t \le 120$ minutes. At time t = 0, the tank contains 30 gallons of water.
- (a) How many gallons of water leak out of the tank from time t = 0 and t = 3 minutes?
- (b) How many gallons of water are in the tank at time t = 3 minutes?
- (c) Write an expression for A(t), the total number of gallons of water in the tank at time t.
- (d) At what time t, $0 \le t \le 120$, is the amount of water in the tank a maximum? Justify your answer.

ASSIGNMENT #6

AB 5/BC 5

10. Consider the curve given by $xy^2 - x^3y = 6$.

- (a) Show that $\frac{dy}{dx} = \frac{3x^2y y^2}{2xy x^3}$.
- (b) Find all the points on the curve whose *x*-coordinate is 1, and write an equation for the tangent line at each of these points.
- (c) Find the *x*-coordinate of each point on the curve where the tangent line is vertical.

AB 6

11. Consider the differential equation
$$\frac{dy}{dx} = \frac{3x^2}{e^{2y}}$$
.

- (a) Find a solution y = f(x) to the differential equation satisfying $f(0) = \frac{1}{2}$.
- (b) Find the domain and range of the function f found in part (a).