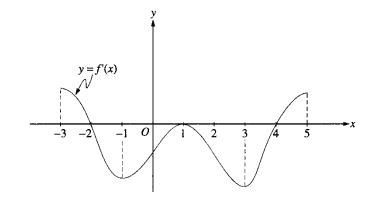
ASSIGNMENT #4

1992 AB 4 No Calculator

- 1. Consider the curve defined by the equation $y + \cos y = x + 1$ for $0 \le y \le 2\pi$.
 - (a) Find $\frac{dy}{dx}$ in terms of y.
 - (b) Write an equation for each vertical tangent to the curve.
 - (c) Find $\frac{d^2y}{dx^2}$ in terms of y.

2002 AB 2 (Form B) Calculator Allowed

- 2. The number of gallons, P(t) of a pollutant in a lake changes at a rate of $P'(t) = 1 3e^{-0.2\sqrt{t}}$ gallons per day, where *t* is measured in days. There are 50 gallons of pollutant in the lake a time t = 0. The lake is considered to be safe when it contains 40 gallons or less of pollutant.
 - (a) Is the amount of pollutant increasing at time t = 9? Why or why not?
 - (b) For what value of *t* will the number of gallons of pollutant be at a minimum? Justify your answer.
 - (c) Is the lake safe when the number of gallons of pollutant is at its minimum? Justify your answer.
 - (d) An investigator used the tangent line approximation to P(t) at t = 0 as a model for the amount of pollutant in the lake. At what time *t* does this model predict that the lake becomes safe?

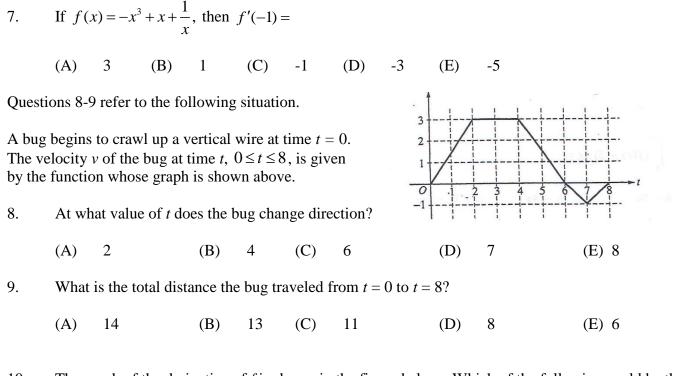

2003 AB 4 (Form B) No Calculator

- 3. A particle moves along the *x*-axis with velocity at time $t \ge 0$ given by $v(t) = -1 + e^{1-t}$.
 - (a) Find the acceleration of the particle at time t = 3.
 - (b) Is the speed of the particle increasing at time t = 3? Give a reason for your answer.
 - (c) Find all values of *t* at which the particle changes direction. Justify your answer.
 - (d) Find the total distance traveled by the particle over the time interval $0 \le t \le 3$.

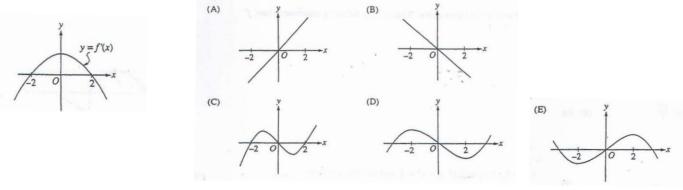
1991 BC 3

- 4. Let *R* be the shaded region in the first quadrant enclosed by the *y*-axis and the graphs of $y = \sin x$ and $y = \cos x$.
 - (a) Find the area of *R*. (without calculator)
 - (b) Find the volume of the solid generated when *R* is revolved about the *x*-axis. (with calculator)
 - (c) Find the volume of the solid whose base is *R* and whose cross sections cut by planes perpendicular to the *x*-axis are squares. (with calculator).

1996 AB 1



- 5. The figure above shows the graph of f', the derivative of a function f. The domain of f is the set of all real numbers x such that -3 < x < 5.
 - (a) For what values of x does f have a relative maximum? Why?
 - (b) For what values of x does f have a relative minimum? Why?
 - (c) On what intervals is the graph of f concave upward? Use f' to justify your answer.
 - (e) Suppose that f(1) = 0. Draw a sketch that shows the general shape of the graph of the function *f* on the open interval 0 < x < 2.


DO NOT USE A CALCULATOR ON THIS PORTION.

6. If
$$\int_{a}^{b} f(x) dx = a + 2b$$
, then $\int_{a}^{b} (f(x) + 5) dx =$

(A) a + 2b + 5 (B) 5b - 5a (C) 7b - 4a (D) 7b - 5a (E) 7b - 6a

10. The graph of the derivative of f is shown in the figure below. Which of the following could be the graph of f?

11. Let *f* be a function defined for all real numbers *x*. If $f'(x) = \frac{|4 - x^2|}{x - 2}$, then *f* is decreasing on the interval (A) $(-\infty, 2)$ (B) $(-\infty, \infty)$ (C) (-2, 4) (D) $(-2, \infty)$ (E) $(2, \infty)$

- 12. Let *f* be a differentiable function such that f(3) = 2 and f'(3) = 5. If the tangent line to the graph of *f* at x = 3 is used to find the approximation to a zero of *f*, that approximation is
 - (A) 0.4 (B) 0.5 (C) 2.6 (D) 3.4 (E) 5.5
- 13. The area of the region enclosed by the graph of $y = x^2 + 1$ and the line y = 5 is

(A)
$$\frac{14}{3}$$
 (B) $\frac{16}{3}$ (C) $\frac{28}{3}$ (D) $\frac{32}{3}$ (E) 8π

14.
$$\int_{0}^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos^{2} x} dx$$
 is
(A) 0 (B) 1 (C) $e - 1$ (D) e (E) $e + 1$

15. The average value of $\cos x$ on the interval [-3, 5] is

(A)
$$\frac{\sin 5 - \sin 3}{8}$$
 (B) $\frac{\sin 5 - \sin 3}{2}$ (C) $\frac{\sin 3 - \sin 5}{2}$
(D) $\frac{\sin 3 + \sin 5}{2}$ (E) $\frac{\sin 3 + \sin 5}{8}$

16.
$$\lim_{x \to 1} \frac{x}{\ln x}$$
 is

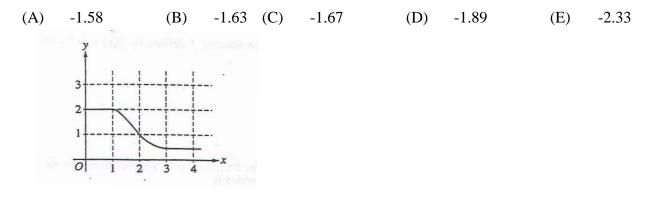
(A) 0 (B) $\frac{1}{e}$ (C) 1 (D) e (E) nonexistent

17. What are all the values of x for which the function f defined by $f(x) = (x^2 - 3)e^{-x}$ is increasing?

(A) There are no such values of x(B) x < -1 and x > 3(C) -3 < x < 1(D) -1 < x < 3(E) All values of x

18. If the region enclosed by the y-axis, the line y = 2, and the curve $y = \sqrt{x}$ is revolved about the y-axis, the volume of the solid generated is

(A)
$$\frac{32\pi}{5}$$
 (B) $\frac{16\pi}{3}$ (C) $\frac{16\pi}{5}$ (D) $\frac{8\pi}{3}$ (E) π

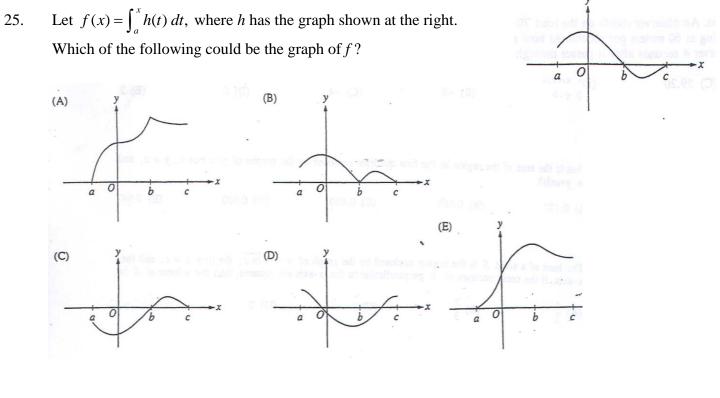

19. The expression $\frac{1}{50}\left(\sqrt{\frac{1}{50}} + \sqrt{\frac{2}{50}} + \sqrt{\frac{3}{50}} + \dots + \sqrt{\frac{50}{50}}\right)$ is a Riemann sum approximation for

(A)
$$\int_{0}^{1} \sqrt{\frac{x}{50}} dx$$
 (B) $\int_{0}^{1} \sqrt{x} dx$ (C) $\frac{1}{50} \int_{0}^{1} \sqrt{\frac{x}{50}} dx$
(D) $\frac{1}{50} \int_{0}^{1} \sqrt{x} dx$ (E) $\frac{1}{50} \int_{0}^{50} \sqrt{x} dx$

ASSIGNMENT #4

YOU MAY USE A CALCULATOR ON THE REMAINING PROBLEMS. It will not be needed on all problems.

20. The graph of the function $y = x^3 + 6x^2 + 7x - 2\cos x$ changes concavity at x =


21. The graph of f is shown in the figure above. If $\int_{1}^{3} f(x) dx = 2.3$ and F'(x) = f(x), then F(3) - F(0) =

- (A) 0.3 (B) 1.3 (C) 3.3 (D) 4.3 (E) 5.3
- 22. The base of a solid *S* is the region enclosed by the graph of $y = \sqrt{\ln x}$, the line x = e, and the *x*-axis. If the cross sections of *S* perpendicular to the *x*-axis are squares, then the volume of *S* is

(A)
$$\frac{1}{2}$$
 (B) $\frac{2}{3}$ (C) 1 (D) 2 (E) $\frac{1}{3}(e^3-1)$

23. Let $f(x) = \sqrt{x}$. If the rate of change of f at x = c is twice its rate of change at x = 1, then c =

- (A) $\frac{1}{4}$ (B) 1 (C) 4 (D) $\frac{1}{\sqrt{2}}$ (E) $\frac{1}{2\sqrt{2}}$
- 24. At time $t \ge 0$, the acceleration of a particle moving on the *x*-axis is $a(t) = t + \sin t$. At t = 0, the velocity of the particle is -2. For what value of *t* will the velocity of the particle be zero?
 - (A) 1.02 (B) 1.48 (C) 1.85 (D) 2.81 (E) 3.14

Х	0	0.5	1.0	1.5	2.0
f(x)	3	3	5	8	13

26. A table of values for a continuous function *f* is shown above. If four equal subintervals of [0, 2] are used, which of the following is the trapezoidal approximation of $\int_{0}^{2} f(x) dx$?

(A) 8	(B)	12	(C)	16	(D) 24	(E)	32
-------	-----	----	-----	----	--------	-----	----