1981 AB 1 Calculator allowed for PART C ONLY

1. Let f be the function defined by $f(x)=x^{4}-3 x^{2}+2$.
(a) Find the zeros of f.
(b) Write an equation of the line tangent to the graph of f at the point where $x=1$.
(c) Find the x-coordinate of each point at which the line tangent to the graph of f is parallel to the line $y=-2 x+4$.

1981 AB 6-BC 4 Calculator allowed
2. A particle moves along the x-axis so that at time t its position is given by $x(t)=\sin \left(\pi t^{2}\right)$ for $-1 \leq t \leq 1$.
(a) Find the velocity at time t.
(b) Find the acceleration at time t.
(c) For what values of t does the particle change direction?
(d) Find all values of t for which the particle is moving left.

1990 AB 1 Calculator allowed
3. A particle initially at rest moves along the x-axis so that its acceleration at any time $t \geq 0$ is given by $a(t)=12 t^{2}-4$. The position of the particle when $t=1$ is $x(1)=3$.
(a) Find the values of t for which the particle is at rest.
(b) Write an expression for the position $x(t)$ of the particle at any time $t \geq 0$.
(c) Find the total distance traveled by the particle from $t=0$ to $t=2$.

1988 AB 5 Calculator allowed
4. Let R be the region in the first quadrant under the graph of $y=\frac{x}{x^{2}+2}$ for $0 \leq x \leq \sqrt{6}$.
(a) Find the area of R.
(b) If the line $x=k$ divides R into two regions of equal area, what is the value of k ?
(c) What is the average value of $y=\frac{x}{x^{2}+2}$ on the interval $0 \leq x \leq \sqrt{6}$?

1997 AB 3 No Calculator

5. Let f be the function given by $f(x)=\sqrt{x-3}$.
(a) Sketch the graph of f and shade the region R enclosed by the graph of f, the x-axis, and the vertical line $x=6$.
(b) Find the area of the region R described in part (a).
(c) Rather than using the line $x=6$ as in part (a), consider the line $x=w$, where w can be any number greater than 3 . Let $A(w)$ be the area of the region enclosed by the graph of f, the x-axis, and the vertical line $x=w$. Write an integral expression for $A(w)$.
(d) Let $A(w)$ be described in part (c). Find the rate of change of A with respect to w when $w=6$.

1991 AB 5

6. Let f be a function that is even and continuous on the closed interval $[-3,3]$. The function f and its derivatives have the properties indicated in the table below.

x	0	$0<x<1$	1	$1<x<2$	2	$2<x<3$
$f(x)$	1	Positive	0	Negative	-1	Negative
$f^{\prime}(x)$	Undefined	Negative	0	Negative	Undefined	Positive
$f^{\prime \prime}(x)$	Undefined	Positive	0	Negative	Undefined	Negative

(a) Find the x-coordinate of each point at which f attains an absolute maximum value or an absolute minimum value. For each x-coordinate you give, state whether f attains an absolute maximum or an absolute minimum.
(b) Find the x-coordinate of each point of inflection on the graph of f. Justify your answer.
(c) Sketch the graph of a function with all the given characteristics of f.

1989 AB 5

Note: This is the graph of the derivative of f, not the graph of f
7. The figure above shows the graph of f^{\prime}, the derivative of a function f. The domain of f is the set of all real numbers x such that $-10 \leq x \leq 10$.
(a) For what values of x does the graph of f have a horizontal tangent?
(b) For what values of x in the interval $(-10,10)$ does f have a relative maximum? Justify your answer.
(c) For what values of x is the graph of f concave downward? Justify your answer.
8. The graph of the function f consists of a semicircle and two line segments as shown above. Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$.

(a) Find $g(3)$.
(b) Find all values of x on the open interval $(-2,5)$ at which g has a relative maximum. Justify your answer.
(c) Write an equation for the line tangent to the graph of g at $x=3$.
(d) Find the x-coordinate of each point of inflection of the graph of g on the open interval $(-2,5)$. Justify your answer.

2004 AB 4 (Form B)

9. The figure below shows the graph of f^{\prime}, the derivative of the function f, on the closed interval $-1 \leq x \leq 5$. The graph of f^{\prime} has horizontal tangent lines at $x=1$ and $x=3$. The function f is twice differentiable with $f(2)=6$.
(a) Find the x-coordinate of each of the points of inflection of the graph of f. Give a reason for your answer.
(b) At what value of x does f attain its absolute minimum value on the closed interval $-1 \leq x \leq 5$? At what value of x does f attain its absolute maximum value on the closed interval $-1 \leq x \leq 5$? Justify your answers.
(c) Let g be the function defined by $g(x)=x f(x)$. Find an equation for the line tangent to the graph of g at $x=2$.

Graph of f^{\prime}

1999 AB 5
10. The graph of the function f, consisting of three line segments, is given above. Let $g(x)=\int_{1}^{x} f(t) d t$.
(a) Compute $g(4)$ and $g(-2)$.
(b) Find the instantaneous rate of change of g, with respect to x at $x=1$.
(c) Find the absolute minimum value of g on the closed interval [-2, 4]. Justify your answer.
(d) The second derivative of g is not defined at $x=1$ and $x=2$. How many of these values are x-coordinates of points of inflection of the graph of g ? Justify your answer.

