- 1981 AB 1 Calculator allowed for PART C ONLY
- 1. Let *f* be the function defined by $f(x) = x^4 3x^2 + 2$.
 - (a) Find the zeros of f.
 - (b) Write an equation of the line tangent to the graph of f at the point where x = 1.
 - (c) Find the *x*-coordinate of each point at which the line tangent to the graph of *f* is parallel to the line y = -2x+4.

1981 AB 6—BC 4 Calculator allowed

- 2. A particle moves along the *x*-axis so that at time *t* its position is given by $x(t) = \sin(\pi t^2)$ for $-1 \le t \le 1$.
 - (a) Find the velocity at time *t*.
 - (b) Find the acceleration at time *t*.
 - (c) For what values of *t* does the particle change direction?
 - (d) Find all values of *t* for which the particle is moving left.

1990 AB 1 Calculator allowed

- 3. A particle initially at rest moves along the *x*-axis so that its acceleration at any time $t \ge 0$ is given by $a(t) = 12t^2 4$. The position of the particle when t = 1 is x(1) = 3.
 - (a) Find the values of *t* for which the particle is at rest.
 - (b) Write an expression for the position x(t) of the particle at any time $t \ge 0$.
 - (c) Find the total distance traveled by the particle from t = 0 to t = 2.

1988 AB 5 Calculator allowed

4. Let *R* be the region in the first quadrant under the graph of $y = \frac{x}{x^2 + 2}$ for $0 \le x \le \sqrt{6}$.

- (a) Find the area of R.
- (b) If the line x = k divides R into two regions of equal area, what is the value of k?

(c) What is the average value of
$$y = \frac{x}{x^2 + 2}$$
 on the interval $0 \le x \le \sqrt{6}$?

1997 AB 3 No Calculator

- 5. Let *f* be the function given by $f(x) = \sqrt{x-3}$.
 - (a) Sketch the graph of *f* and shade the region *R* enclosed by the graph of *f*, the *x*-axis, and the vertical line x = 6.
 - (b) Find the area of the region *R* described in part (a).
 - (c) Rather than using the line x = 6 as in part (a), consider the line x = w, where w can be any number greater than 3. Let A(w) be the area of the region enclosed by the graph of f, the x-axis, and the vertical line x = w. Write an integral expression for A(w).
 - (d) Let A(w) be described in part (c). Find the rate of change of A with respect to w when w = 6.

1991 AB 5

6. Let f be a function that is <u>even</u> and continuous on the closed interval [-3, 3]. The function f and its derivatives have the properties indicated in the table below.

x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3
f(x)	1	Positive	0	Negative	-1	Negative
f'(x)	Undefined	Negative	0	Negative	Undefined	Positive
f''(x)	Undefined	Positive	0	Negative	Undefined	Negative

- (a) Find the *x*-coordinate of each point at which f attains an absolute maximum value or an absolute minimum value. For each *x*-coordinate you give, state whether f attains an absolute maximum or an absolute minimum.
- (b) Find the *x*-coordinate of each point of inflection on the graph of f. Justify your answer.
- (c) Sketch the graph of a function with all the given characteristics of *f*.

<u>Note:</u> This is the graph of the <u>derivative</u> of f, <u>not</u> the graph of f

- 7. The figure above shows the graph of f', the derivative of a function f. The domain of f is the set of all real numbers x such that $-10 \le x \le 10$.
 - (a) For what values of x does the graph of f have a horizontal tangent?
 - (b) For what values of x in the interval (-10, 10) does f have a relative maximum? Justify your answer.
 - (c) For what values of x is the graph of f concave downward? Justify your answer.

1997 AB 5 No Calculator

8. The graph of the function f consists of a semicircle and two line segments as shown above. Let g be the function given

by
$$g(x) = \int_0^x f(t) dt$$
.

- (a) Find g(3).
- (b) Find all values of x on the open interval (-2, 5) at which g has a relative maximum. Justify your answer.
- (c) Write an equation for the line tangent to the graph of g at x = 3.
- (d) Find the *x*-coordinate of each point of inflection of the graph of g on the open interval (-2, 5). Justify your answer.

2004 AB 4 (Form B)

- 9. The figure below shows the graph of f', the derivative of the function f, on the closed interval $-1 \le x \le 5$. The graph of f' has horizontal tangent lines at x = 1 and x = 3. The function f is twice differentiable with f(2) = 6.
 - (a) Find the x –coordinate of each of the points of inflection of the graph of f. Give a reason for your answer.
 - (b) At what value of x does f attain its absolute minimum value on the closed interval $-1 \le x \le 5$? At what value of x does f attain its absolute maximum value on the closed interval $-1 \le x \le 5$? Justify your answers.
 - (c) Let g be the function defined by g(x) = xf(x). Find an equation for the line tangent to the graph of g at x = 2.

1999 AB 5

10. The graph of the function *f*, consisting of three line segments, is given above. Let

$$g(x) = \int_{1}^{x} f(t) dt.$$

- (a) Compute g(4) and g(-2).
- (b) Find the instantaneous rate of change of g, with respect to x at x = 1.
- (c) Find the absolute minimum value of g on the closed interval [-2, 4]. Justify your answer.
- (d) The second derivative of g is not defined at x = 1 and x = 2. How many of these values are x-coordinates of points of inflection of the graph of g? Justify your answer.

