ASSIGNMENT #2

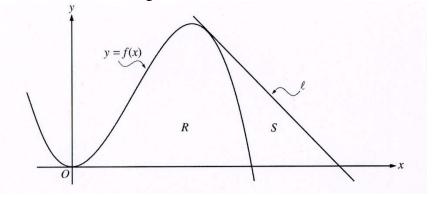
Calculators are allowed on all problems.

2002 AB 2 (Form B)

- 1. Let *R* be the region bounded by the *y*-axis and the graphs of $y = \frac{x^3}{1+x^2}$ and y = 4-2x.
 - (a) Find the area of region R.
 - (b) Find the volume of the solid generated when R is revolved about the x-axis.
 - (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the *x*-axis is a square. Find the volume of this solid.

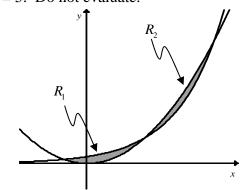
1996 AB 2

- 2. Let *R* be the region in the first quadrant under the graph of $y = \frac{1}{\sqrt{x}}$ for $4 \le x \le 9$.
 - (a) Find the area of region R.
 - (b) If the line x = k divides the region *R* into two regions of equal area, what is the value of *k*?
 - (c) Find the volume of the solid whose base is the region *R* and whose cross sections cut by planes perpendicular to the *x*-axis are squares.


2004 AB 1 (Form B)

- 3. Let *R* be the region enclosed by the graph of $y = \sqrt{x-1}$, the vertical line x = 10, and the *x*-axis.
 - (a) Find the area of region R.
 - (b) Find the volume of a solid generated when *R* is revolved about the horizontal line y = 3.
 - (c) Find the volume of a solid generated when *R* is revolved about the vertical line x = 10.

ASSIGNMENT #2


2003 AB 1 (Form B)

- 4. Let *f* be the function given by $f(x) = 4x^2 x^3$, and let ℓ be the line y = 18 3x, where ℓ is the tangent line to the graph of *f*. Let *R* be the region bounded by the *x*-axis and the graph of *f*, and let *S* be the region bounded by the graph of *f*, the line ℓ , and the *x*-axis, as shown below.
 - (a) Show that line ℓ is tangent to the graph of y = f(x) at the point x = 3.
 - (b) Find the area of region *S*.
 - (c) Find the volume of the solid generated when *R* is revolved about the *x*-axis.

1995 AB 4

- 5. The shaded regions R_1 and R_2 shown below are enclosed by the graphs of $f(x) = x^2$ and $g(x) = 2^x$.
 - (a) Find the *x* and *y*-coordinates of the three points of intersection of the graphs of *f* and *g*.
 - (b) Without using absolute value, set up an expression involving one or more integrals that gives the total area enclosed by the graphs of f and g. Do not evaluate.
 - (c) Without using absolute value, set up an expression involving one or more integrals that gives the volume of the solid generated by revolving region R_1 about the line y = 5. Do not evaluate.

Note: Figure not drawn to scale.

ASSIGNMENT #2

1991 AB 1 No Calculator

- 6. Let f be the function that is defined for all real numbers x and that has the following properties. (i) f''(x) = 24x - 18 (ii) f'(1) = -6 (iii) f(2) = 0
 - (a) Find each x such that the line tangent to the graph of f at (x, f(x)) is horizontal.
 - (b) Write an expression for f(x).
 - (c) Find the average value of f on the interval $1 \le x \le 3$.

1989 AB 4 No Calculator

7. Let f be the function defined by
$$f(x) = \frac{x}{\sqrt{x^2 - 4}}$$
.

- (a) Find the domain of f.
- (b) Write an equation for each vertical asymptote to the graph of *f*.
- (c) Write an equation for each horizontal asymptote to the graph of f.

(d) Find
$$f'(x)$$
.

1995 AB 1 Calculator allowed

- 8. Let *f* be the function given by $f(x) = \frac{2x}{\sqrt{x^2 + x + 1}}$.
 - (a) Find the domain of *f*. Justify your answer.
 - (b) In the viewing window $[-5, 5] \times [-3, 3]$, sketch the graph of *f*.
 - (c) Write an equation for each horizontal asymptote of the graph of *f*.

(d) Find the range of f. Use f'(x) to justify your answer. Note: $f'(x) = \frac{x+2}{\left(x^2 + x + 1\right)^{\frac{3}{2}}}$.

1995 AB 3 Calculator allowed

- 9. Consider the curve defined by $-8x^2 + 5xy + y^3 = -149$.
 - (a) Find $\frac{dy}{dx}$.
 - (b) Write an equation for the line tangent the curve at the point (4, -1).
 - (c) There is a number k so that the point (4.2, k) is on the curve. Using the tangent line found in part (b), approximate the value of k.
 - (d) Write an equation that can be solved to find the actual value of k so that the point (4.2, k) is on the curve.
 - (e) Solve the equation found in part (d) for the value of *k*.

1994 AB 6

- 10. Let $F(x) = \int_0^x \sin(t^2) dt$ for $0 \le x \le 3$.
 - (a) Use the trapezoidal rule with four equal subdivisions of the closed interval [0, 1] to approximate F(1).
 - (b) On what intervals is *F* increasing?
 - (c) If the average rate of change of *F* on the closed interval [1, 3] is *k*, find $\int_{1}^{3} \sin(t^{2}) dt$ in terms of *k*.