1997 MULTIPLE CHOICE (selected problems)

Do not use a calculator on this portion.

1. $\int_{1}^{2}\left(4 x^{3}-6 x\right) d x=$
(A) 2
(B) 4
(C) 6
(D) 36
(E) 42
2. If $f(x)=x \sqrt{2 x-3}$, then $f^{\prime}(x)=$
(A) $\frac{3 x-3}{\sqrt{2 x-3}}$
(B) $\frac{x}{\sqrt{2 x-3}}$
(C) $\frac{1}{\sqrt{2 x-3}}$
(D) $\frac{-x+3}{\sqrt{2 x-3}}$
(E) $\frac{5 x-6}{\sqrt{2 x-3}}$
3. The graph of $y=3 x^{4}-16 x^{3}+24 x^{2}+48$ is concave down for
(A) $\quad x<0$
(B) $\quad x>0$
(C) $x<-2$ or $x>-\frac{2}{3}$
(D) $\quad x<\frac{2}{3}$ or $x>2$
(E) $\frac{2}{3}<x<2$
4. $\frac{1}{2} \int e^{\frac{t}{2}} d t=$
(A) $e^{-t}+C$
(B) $e^{\frac{-t}{2}}+C$
(C) $e^{\frac{t}{2}}+C$
(D) $2 e^{\frac{t}{2}}+C$
(E) $\quad e^{t}+C$
5. $\frac{d}{d x} \cos ^{2}\left(x^{3}\right)=$
(A) $6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(B) $6 x^{2} \cos \left(x^{3}\right)$
(C) $\sin ^{2}\left(x^{3}\right)$
(D) $\quad-6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(E) $\quad-2 \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
6. An equation of the line tangent to the graph of $y=\cos (2 x)$ at $x=\frac{\pi}{4}$ is
(A) $y-1=-\left(x-\frac{\pi}{4}\right)$
(B) $\quad y-1=-2\left(x-\frac{\pi}{4}\right)$
(C) $y=2\left(x-\frac{\pi}{4}\right)$
(D) $y=-\left(x-\frac{\pi}{4}\right)$
(E) $\quad y=-2\left(x-\frac{\pi}{4}\right)$.

ASSIGNMENT \#1

7. At what point on the graph of $y=\frac{1}{2} x^{2}$ is the tangent line parallel to the line $2 x-4 y=3$?
(A) $\left(\frac{1}{2},-\frac{1}{2}\right)$
(B) $\left(\frac{1}{2}, \frac{1}{8}\right)$
(C) $\left(1,-\frac{1}{4}\right)$
(D) $\left(1, \frac{1}{2}\right)$
(E) $\quad(2,2)$
8. The graph of the function f in shown in the figure. Which of the following statements about f is true?
(A) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow b} f(x)$
(B) $\lim _{x \rightarrow a} f(x)=2$
(C) $\quad \lim _{x \rightarrow b} f(x)=2$
(D) $\quad \lim _{x \rightarrow b} f(x)=1$
(E) $\quad \lim _{x \rightarrow a} f(x)$ does not exist

9. If $x^{2}+y^{2}=25$, what is the value of $\frac{d^{2} y}{d x^{2}}$ at the point $(4,3)$?
(A) $-\frac{25}{27}$
(B) $-\frac{7}{27}$
(C) $\frac{7}{27}$
(D) $\frac{3}{4}$
(E) $\frac{25}{27}$
10. If $f(x)=\ln \left|x^{2}-1\right|$, then $f^{\prime}(x)=$
(A) $\quad\left|\frac{2 x}{x^{2}-1}\right|$
(B) $\frac{2 x}{\left|x^{2}-1\right|}$
(C) $\frac{2|x|}{x^{2}-1}$
(D) $\frac{2 x}{x^{2}-1}$
(E) $\frac{1}{x^{2}-1}$

You may use a calculator on the remaining problems. It will not be needed on all problems.
11. If $f(x)=\frac{e^{2 x}}{2 x}$, then $f^{\prime}(x)=$
(A) 1
(B) $\frac{e^{2 x}(1-2 x)}{2 x^{2}}$
(C) $e^{2 x}$
(D) $\frac{e^{2 x}(2 x+1)}{x^{2}}$
(E) $\frac{e^{2 x}(2 x-1)}{2 x^{2}}$
12. Let f be a function such that $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=5$. Which of the following must be true?
I. f is continuous at $\mathrm{x}=2$.
II. $\quad f$ is differentiable at $\mathrm{x}=2$.
(A) I only
(B) II only
(C) I and II
13. Let f be the function given by $f(x)=2 e^{4 x^{2}}$. For what value of x is the slope of the line tangent to the graph of f at $(x, f(x))$ equal to 3 ?
(A) 0.168
(B) 0.276
(C) 0.318
(D)
0.342
(E) 0.551
14. If the derivative of f is given by $f^{\prime}(x)=e^{x}-3 x^{2}$, at which of the following x does f have a relative maximum value?
(A) $\quad-0.46$
(B) 0.20
(C) 0.91
(D) 0.95
(E) 3.73
15. If $y=2 x-8$, what is the minimum value of the product $x y$?
(A) -16
(B) -8
(C) -4
(D) 0
(E) 2
16. What is the area of the region in the first quadrant enclosed by the graphs of $y=\cos x, \quad y=x$, and the y-axis?
(A) 0.127
(B) 0.385
(C) 0.400
(D) 0.600
(E) 0.947

Do not use a calculator.
17. $\lim _{x \rightarrow 2} \frac{x-2}{x-2}$
18. $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
19. $\lim _{x \rightarrow 5} 2 x^{2}-4 x+7$
20. $\lim _{x \rightarrow \infty} \frac{x^{2}+4}{x-x^{2}}$
21. $\lim _{x \rightarrow-\infty} \frac{2 x+3}{1-x^{2}}$
22. $\lim _{x \rightarrow-\infty} \frac{|8 x+6|}{4 x-2}$

1997 AB 1 Calculator Allowed

23. A particle moves along the x-axis so that its velocity at any time $t \geq 0$ is given by $v(t)=3 t^{2}-2 t-1$. The position $x(t)$ is 5 for $t=2$.
(a) Write a polynomial expression for the position of the particle at any time $t \geq 0$.

ASSIGNMENT \#1
(b) For what values of $t, 0 \leq t \leq 3$, is the particle's instantaneous velocity the same as its average velocity on the closed interval $[0,3]$?
(c) Find the total distance traveled by the particle from time $t=0$ until time $t=3$.

2002 AB 3 (Form B) Calculator Allowed

24. A particle moves along the x-axis so that its velocity v at any time t, for $0 \leq t \leq 16$, is given by $v(t)=e^{2 \sin t}-1$. At time $t=0$, the particle is at the origin.
(a) Sketch the graph of $\mathrm{v}(t)$ for $0 \leq t \leq 16$.
(b) During what intervals of time is the particle moving to the left? Give a reason for your answer.
(c) Find the total distance traveled by the particle from $t=0$ to $t=4$.
(d) Is there any time $t, 0<t \leq 16$, at which the particle returns to the origin? Justify your answer.

1983 AB 2 No Calculator

25. A particle moves along the x-axis so that at time t its position is given by $x(t)=t^{3}-6 t^{2}+9 t+11$.
(a) What is the velocity of the particle at $t=0$?
(b) During what time intervals is the particle moving to the left?
(c) What is the total distance traveled by the particle from $t=0$ to $t=2$?
26. The graph shown is the velocity function for a particle moving on a straight line.
(a) When is the particle at rest?
(b) Find $a(2), a(3)$, and $a(5)$.
(c) Find the total distance traveled by the particle from $t=0$ to $t=7$ seconds.
(d) At what time is the velocity $10 \mathrm{ft} / \mathrm{sec}$?
(e) Give a piecewise function for $v(t)$.
(f) If the position of the particle at time zero is 4 feet, find the position of the particle at time 7 seconds.

time in seconds

1982 AB 1 No Calculator
27. A particle moves along the x-axis in such a way that its acceleration at time t for $t>0$ is given by $a(t)=\frac{3}{t^{2}}$.

When $t=1$, the position of the particle is 6 and its velocity is 2 .
(a) Write an equation for the velocity, $v(t)$, of the particle for all $t>0$.
(b) Write an equation for the position, $x(t)$, of the particle for all $t>0$.
(c) Find the position of the particle when $t=\mathrm{e}$.

