1997 MULTIPLE CHOICE (selected problems)

Do not use a calculator on this portion.

1.
$$\int_{1}^{2} (4x^{3} - 6x) dx =$$

(A) 2 (B) 4 (C) 6 (D) 36 (E) 42

2. If
$$f(x) = x\sqrt{2x-3}$$
, then $f'(x) =$
(A) $\frac{3x-3}{\sqrt{2x-3}}$ (B) $\frac{x}{\sqrt{2x-3}}$ (C) $\frac{1}{\sqrt{2x-3}}$
(D) $\frac{-x+3}{\sqrt{2x-3}}$ (E) $\frac{5x-6}{\sqrt{2x-3}}$

3. The graph of $y = 3x^4 - 16x^3 + 24x^2 + 48$ is concave down for

(A)
$$x < 0$$
 (B) $x > 0$ (C) $x < -2$ or $x > -\frac{2}{3}$
(D) $x < \frac{2}{3}$ or $x > 2$ (E) $\frac{2}{3} < x < 2$

4.
$$\frac{1}{2}\int e^{\frac{t}{2}} dt =$$

(A) $e^{-t} + C$ (B) $e^{\frac{-t}{2}} + C$ (C) $e^{\frac{t}{2}} + C$
(D) $2e^{\frac{t}{2}} + C$ (E) $e^{t} + C$

5.
$$\frac{d}{dx}\cos^2(x^3) =$$

(A) $6x^2\sin(x^3)\cos(x^3)$ (B) $6x^2\cos(x^3)$ (C) $\sin^2(x^3)$
(D) $-6x^2\sin(x^3)\cos(x^3)$ (E) $-2\sin(x^3)\cos(x^3)$

6. An equation of the line tangent to the graph of $y = \cos(2x)$ at $x = \frac{\pi}{4}$ is

(A)
$$y-1 = -\left(x - \frac{\pi}{4}\right)$$
 (B) $y-1 = -2\left(x - \frac{\pi}{4}\right)$ (C) $y = 2\left(x - \frac{\pi}{4}\right)$
(D) $y = -\left(x - \frac{\pi}{4}\right)$ (E) $y = -2\left(x - \frac{\pi}{4}\right)$.

ASSIGNMENT #1

At what point on the graph of $y = \frac{1}{2}x^2$ is the tangent line parallel to the line 2x - 4y = 3? 7.

(A)
$$\left(\frac{1}{2}, -\frac{1}{2}\right)$$
 (B) $\left(\frac{1}{2}, \frac{1}{8}\right)$ (C) $\left(1, -\frac{1}{4}\right)$ (D) $\left(1, \frac{1}{2}\right)$ (E) $\left(2, 2\right)$

The graph of the function f in shown in the figure. Which of the following statements about f is true? 8.

(A)
$$\left| \frac{2x}{x^2 - 1} \right|$$
 (B) $\frac{2x}{|x^2 - 1|}$ (C) $\frac{2|x|}{x^2 - 1}$
(D) $\frac{2x}{x^2 - 1}$ (E) $\frac{1}{x^2 - 1}$

You may use a calculator on the remaining problems. It will not be needed on all problems.

11. If
$$f(x) = \frac{e^{2x}}{2x}$$
, then $f'(x) =$

9.

(A) 1
(B)
$$\frac{e^{2x}(1-2x)}{2x^2}$$
 (C) e^{2x}
(D) $\frac{e^{2x}(2x+1)}{x^2}$ (E) $\frac{e^{2x}(2x-1)}{2x^2}$

ASSIGNMENT #1										
12. Let f be a function such that $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = 5$. Which of the following must be true?										
	١.	f is continuous at x = 2.								
	١١.	f is differentiable at x = 2.								
	(A)	l only	(B)	ll only	(C) a	and II				
13.	Let <i>f</i> be the function given by $f(x) = 2e^{4x^2}$. For what value of x is the slope of the line tangent to the graph of f at (<i>x</i> , <i>f</i> (<i>x</i>)) equal to 3?									
	(A)	0.168	(B)	0.276	(C)	0.318	(D)	0.342	(E) 0.551	
14.	If the derivative of f is given by $f'(x) = e^x - 3x^2$, at which of the following x does f have a relative maximum value?									
	(A)	-0.46	(B)	0.20	(C)	0.91	(D)	0.95	(E) 3.73	
15.	If $y = 2x - 8$, what is the minimum value of the product xy ?									
	(A)	-16	(B)	-8	(C)	-4	(D)	0	(E) 2	
16.	What is the area of the region in the first quadrant enclosed by the graphs of $y = \cos x$, $y = x$, and the y-axis?									
	(A)	0.127	(B)	0.385	(C)	0.400	(D)	0.600	(E) 0.947	
Do not use a calculator.										
17.	$\lim_{x \to \infty} x = 0$	$2\frac{x-2}{x-2}$	$\lim_{x\to 0} \frac{\sin x}{x}$			19. $\lim_{x \to 5} 2x^2 - 4x + 7$				
20.	$\lim_{x\to\infty}$	$\int \frac{x^2+4}{x-x^2}$		21.	$\lim_{x\to -\infty}$	$\frac{2x+3}{1-x^2}$		22. lim _{x-}	$-\infty \frac{ 8x+6 }{4x-2}$	

1997 AB 1 Calculator Allowed

- 23. A particle moves along the *x*-axis so that its velocity at any time $t \ge 0$ is given by $v(t) = 3t^2 2t 1$. The position x(t) is 5 for t = 2.
 - (a) Write a polynomial expression for the position of the particle at any time $t \ge 0$.

ASSIGNMENT #1

- (b) For what values of t, $0 \le t \le 3$, is the particle's instantaneous velocity the same as its average velocity on the closed interval [0, 3]?
- (c) Find the total distance traveled by the particle from time t = 0 until time t = 3.
- 2002 AB 3 (Form B) Calculator Allowed
- 24. A particle moves along the *x*-axis so that its velocity *v* at any time *t*, for $0 \le t \le 16$, is given by
 - $v(t) = e^{2\sin t} 1$. At time t = 0, the particle is at the origin.
 - (a) Sketch the graph of v(t) for $0 \le t \le 16$.
 - (b) During what intervals of time is the particle moving to the left? Give a reason for your answer.
 - (c) Find the total distance traveled by the particle from t = 0 to t = 4.
 - (d) Is there any time t, $0 < t \le 16$, at which the particle returns to the origin? Justify your answer.
- 1983 AB 2 No Calculator
- 25. A particle moves along the *x*-axis so that at time *t* its position is given by $x(t) = t^3 6t^2 + 9t + 11$.
 - (a) What is the velocity of the particle at t = 0?
 - (b) During what time intervals is the particle moving to the left?
 - (c) What is the total distance traveled by the particle from t = 0 to t = 2?
- 26. The graph shown is the velocity function for a particle moving on a straight line.
 - (a) When is the particle at rest?
 - (b) Find *a*(2), *a*(3), and *a*(5).
 - (c) Find the total distance traveled by the particle from t = 0 to t = 7 seconds.
 - (d) At what time is the velocity 10 ft/sec?
 - (e) Give a piecewise function for v(t).
 - (f) If the position of the particle at time zero is 4 feet, find the position of the particle at time 7 seconds.

1982 AB 1 No Calculator

27. A particle moves along the x-axis in such a way that its acceleration at time t for t > 0 is given by $a(t) = \frac{3}{t^2}$.

When t = 1, the position of the particle is 6 and its velocity is 2.

- (a) Write an equation for the velocity, v(t), of the particle for all t > 0.
- (b) Write an equation for the position, x(t), of the particle for all t > 0.
- (c) Find the position of the particle when t = e.